Communication on the Paragon®

David Greenberg ! Barney Maccabe 2 Kevin S. McCurley !
Rolf Riesen 2 Stephen Wheat 2

October 15, 1993

Abstract

In this note we describe the results of some tests of the message-passing performance
of the Intel Paragon. These tests have been carried out under both the Intel-supplied
OSF/1 operating system with an NX library, and also under an operating system
called SUNMOS (Sandia UNM Operating System). For comparison with the previous
generation of Intel machines, we have also included the results on the Intel Touchstone
Delta. The source code used for these tests is identical for all systems. As a result
of these tests, we can conclude that SUNMOS demonstrates that the Intel Paragon
hardware is capable of very high bandwidth communication, and that the message
coprocessor on Paragon nodes can be used to give quite respectable latencies. Further
tuning can be expected to yield even better performance.

Introduction

One of the primary impediments to achieving high efficiency on parallel machines is the
cost of interprocessor communication. The Paragon attempts to mitigate the communica-
tion costs by employing a mesh architecture which allows very fast communication links
(200Mbyte/sec/channel, although our machine is currently running in slow streaming mode,
or 175Mbytes/sec). Further architectural support is supplied via wormhole routing which,
in theory, allows delivery time to be independent of the distance the message travels in the
network. It has become clear to many researchers that a major cost in communication is the
time spent preparing a message to be sent over the links and reassembling it when it arrives.
The Paragon promises two hardware features to aid in reducing this cost, line transmission
units and message co-processors.

We have experimented to see whether it is possible to achieve end-to-end message pass-
ing which achieves the high speeds supported by the links. In particular we compare the

*Supported in part by the U.S. Department of Energy under contract DE-AC04-76 DP00789.
!Organization 1423, Sandia National Laboratories, Albuquerque, NM, 87185
2Organization 1424, Sandia National Laboratories, Albuquerque, NM, 87185



performance of the Intel NX message passing library under the OSF operating system with a
locally developed operating system called SUNMOS (Sandia UNM Operating System). We
have run a number of tests on the paragon, but here we will report on two of these:

o the Intel SAT comtest
e a set of “bucket brigade” tests suggested by R. Littlefield [1].

The current implementation of SUNMOS includes message passing routines to support
the nCUBE VERTEX message passing routines (nread/nwrite) as well as a subset of the
Intel NX message passing routines. In addition, a rudimentary implementation of the Intel
NX-compatible global operations are supported. All of these are implemented in terms of
the underlying message passing mechanism of SUNMOS, which uses somewhat different
semantics (closer to that used by nCUBE’s VERTEX system).

First, the user code running on a node “owns” control of the communication channels in
and out of a node. Unlike NX/OSF, there is no competition for this resource with the kernel
or other users. Since SUNMOS is a single-tasking operating system, when a user wants to
send a message, the user knows that they can go ahead and send it out (unless part of the
channel to the destination is blocked by other messages, in which case hardware will queue
them through the channels). On the sending side, when a message is sent, it immediately
goes out to the destination (or blocks until the message can be started). Each node has
a communication buffer space used for receiving messages. If a receive has already been
posted, then when a message comes in, it goes straight to the user buffer. If a receive has
not been posted, then it is stored in the communication space of the node for later retrieval.
The size of the communication space is configurable when the job is loaded on the compute
nodes. Because of various memory alignment requirements, the message may be copied on
either the sending or receiving side if the buffers are unaligned. This may seem insignificant,
but a standard memcpy () runs slower than sending a message!

Another major difference between SUNMOS and NX/OSF arises from the fact that
messages are not packetized under SUNMOS, but NX/OSF currently packetizes messages in
packets of not more than 1792 bytes[2]. From the limited information that was available, we
were unable to completely understand the protocols used by NX/OSF for message passing,
but it appears that each node sets aside a constant (configurable) number of buffers for
receiving packets from each other node, and some additional space that it assigns to other
incoming packets. Some form of flow control is used to avoid overflowing these buffers.

In previous studies on the Delta we have shown that the speed of collective communication
routines can depend greatly on the algorithm used. The large size of Sandia’s Paragon system
(16x118 nodes) should make these differences even clearer. Messages will potentially have to
travel long distances and the congestion at the middle of the machine could be extreme. We
expect that the low startup overheads of SUNMOS will also affect the choice of algorithm.
We plan to report on experiments with algorithms for global operations in a future paper.

Since both operating systems used in our tests are under continuing development, this is
necessarily a snapshot of the current status (as of this writing, on September 23, 1993) that
will be quickly out of date. The version of OSF that was tested is referred to as Transmittal



11, and is a beta version that followed official Release 1.0c. The version of NX used on the
Delta is 1.5 (the slow production kernel).

The Intel System Acceptance Test (SAT)

Intel ships a set of tests known as the System Acceptance Tests (SAT, in /usr/lib/sat)
for the Paragon. Included in this test is a program called comtest that is designed to test
communication. We ran this test on the Paragon under both SUNMOS and OSF, with the
intent to measure the performance of message passing. We also attempted to run this test
on the Delta, with limited success.

The SAT comtest currently consists of a number of tests. Some of the tests are not
scalable, placing them in the category of stress tests rather than reflective of what a well-
planned application might use. In particular, the “fan-in” test requires every node to send a
message to node 0, which will deadlock node 0 under OSF if it is run on too many nodes, and
can consume a great deal of comm space on node (0 under SUNMOS. For example, buffering
for the fan-in test requires that node 0 be prepared to receive a number of messages from
every other node. Under SUNMOS, this can be accomplished by setting a comm space aside
that is big enough to accomodate all of the messages, but it’s a pretty silly use of memory.
Unfortunately, we could not figure out how to run this under the NX buffering scheme used
on the Paragon under OSF with a large number of nodes - it caused node 0 to exhaust it’s
buffer space, no matter how big we set it.

Machine 05 unforced ur.lforced median
csend isend alpha
Delta NX 1.5 75 78 84
Paragon OSF T11 61 52 105
Paragon SUNMOS 33 33 56
Paragon SUNMOS -pl 24 24 40

Table 1: Latency figures from Intel’s SAT comtest, in microseconds. Timings under OSF
and NX are for unforced message types. SUNMOS -pl indicates the use of the message
COPTOCESSOT.

The tests in the SAT comtest are: ping-pong, ring, broadcast, bisection, random, latency,
all to all, exchange, fan-in, and corner-to-corner. We ran these tests on the Paragon under
OSF and SUNMOS, and also on the Touchstone Delta at Caltech. We found that the fan-in
would not run correctly on a large number of nodes under any circumstance, and the ring
and all-to-all tests were extremely slow on the Delta (to the point where it was hard to tell
if they were making progress).

In this short note, we give the results from the latency and ping-pong test, primarily be-
cause seem to most accurately measure latency and bandwidth. We found that the ping-pong



Bandwidth for SAT comtest (ping-pong with forced messages)
160

140

120

100

SUNMOS (-p0) - 7
OSF (T11)

80 Delta -~

MB/second

60

20 A Tl

/’?/ :
e A
4 16 64 256 1024 4096 16384 65536 262144 1.05e+06
message length in bytes

B e B B BB B

Figure 1: Bandwidth using ping-pong from Intel SAT comtest. Shown are figures for SUN-
MOS on the Paragon, OSF T11 on the Paragon, and NX 1.5 on the Delta.

Time for SAT comtest (ping-pong with forced messages)
256

128 :

SUNMOS (-p0) - A

64 OSF (T11)
Delitg —--- !

16

T

Milliseconds
(o]
“m
.
kY

N
B
:

(=5
3

% = | /,zx’/ /

I T4

|
A
H

P
b -

i
&
53
f
L
-
\
\
i
\

:
L]
05 Fog

0.25

4 16 64 256 1024 4096 16384 65536 262144 1.05e+06
message length in bytes

Figure 2: Timing of ping-pong test from Intel SAT comtest. Shown are figures for SUNMOS
on the Paragon, OSF T11 on the Paragon, and NX 1.5 on the Delta.



test ran reliably on all three combinations (Delta, Paragon OSF, and Paragon SUNMOS).
Moreover, it gives a better indication of the types of bandwith figures that can be obtained
in real applications than many of the other tests. The ping-pong test uses two active nodes,
0 and n — 1. Node 0 sends out a number of messages to node n — 1, who then receives them
and returns them immediately. The roundtrip time for node 0 to send out and receive back
all of the messages is calculated. !

The bandwidth figures from this test are shown in Figures 1 and 2. Notable in these
results is the fact that SUNMOS reaches a bandwidth of over 100 megabytes/second for
messages of only 64K, and peaks at close to 160 megabytes/second. This compares well with
the 175 megabytes per second peak rating of the hardware in slow streaming mode.

We should mention that early tests with the ping-pong routine under SUNMOS revealed
a deficiency in the memcpy routine. When we first ran the test, we got quite unpredictable
results, with some runs producing a bandwidth of 160 megabytes per second, and some run-
ning at only 30 megabytes/second, with no predicatable behaviour. After close examination,
we discovered that there were slight timing differences that could occur during the load that
would influence whether a receive for a message was posted before it actually arrived at
the node. In the case when the receive was posted, SUNMOS placed it directly into user
memory with Direct Memory Access (DMA). When the receive had not been posted, SUN-
MOS allocated communication buffer space and routed the message directly to this location.
When the receive was later posted by the user, SUNMOS used memcpy to copy it from comm
space to user space, and it turned out that the first implementation of memcpy was very slow.
Some minor effort at optimizing this routine eliminated the huge difference, but graphically
illustrated the importance of paying attention to memory usage when passing large messages.

In running the SAT comtest, we also measured latency figures under all three machines.
Latency can be measured in a variety of ways. For example, consider the situation where
two nodes exchange zero-length messages:

node 0 node 1
send — receive
receive +«— send

If the round trip time is measured for this and used as a means of measuring latency, then we
should keep in mind that the time to initiate the send is overlapped with the time to initiate
the receive, resulting in a smaller overall time. We shall not be concerned with this issue
here, because our goal is to run the same code under two different operating systems. The
figures given here correspond to the “loopback” « discussed in [1]. Comparisons to latency
figures on other machines require a more in-depth analysis, since the term “latency” is used
to mean several different things, and are strongly dependent on the assumptions made for
the software model.

The results of the SAT latency comtest are given in Table 1. The time to complete a
send and receive operation is shown, as well as the loopback «. Note that actual latencies

1One of the authors likens this to Australian-rules ping pong, where the server is allowed to serve five
balls at once before waiting to let the other player hit one back.



for SUNMOS are about 15% better if the code is written to use the native nsend/nrecv
calls instead of Intel NX calls. The differences between the respective libraries are minor,
but compatibility with NX behavior imposes some overhead. SUNMOS provides the option
to use the message coprocessor, and latency figures are given for both (all other figures in
this paper do not use the coprocessor). Experiments are planned for the future to determine
the best use under SUNMOS of the second processor of the Paragon GP node.

It should also be noted that the results from OSF are unpredictable, possibly due to dif-
ficulties in eliminating measurement of time to page various pieces of code. We used the -plk
option on loading and ran numerous iterations, but we still repeatedly observed maximum
and minimum times for alpha that range from 101 to over 12000 microseconds. The latter
figure was a maximum latency, whereas the median was usually around 110 microseconds.
It appears that the first message is extremely expensive, for reasons not understood by us.
Experience shows that timing codes on the Paragon under OSF is a difficult and haphazard
process.

Littlefield’s bucket brigade test

R. Littlefield of Pacific Northwest Labs has argued persuasively that a good measure of
message passing performance can be determined from what he refers to as a “bucket brigade”,
where processors pass data around a ring embedded into the mesh. In a paper presented
at the 1992 Intel Users’ group Meeting[1], he presented the performance of the Delta and
iPSC/860 under a variety of techniques. There are a number of protocols that an be used
to pass messages around a ring, depending on

e whether a node does a simultaneous send and receive,
e whether “forced” message types are used with handshaking,
e whether blocking or nonblocking messages are used.

Eight variations based on combinations of these factors are described in Appendix A. In order
to eliminate effects from contention, messages were passed around a ring of eight processors
illustrated in Figure 5, using each of the eight methods.

Timings were made of the time to pass a message all the way around the ring, after which
the time was divided by the number of nodes to calculate the time to pass on one message
and receive another. Space constraints prevent us from showing all of the results here, but
two of the timings for these are given in Figures 4 and 3. In every case, SUNMOS was at
least a factor of three faster than OSF across the board for all message sizes, and sometimes
a factor of six. Note that the timings for messages of zero length would correspond to the

“shift” alpha of [1].



1: Odd/even with csends (log-log scale)

0.2
0.1
0.0512

OSF (T11 with -plk -mbf 3500000) —;
0.0256 Delta-— -

SUNMOS (without coprocessor) -

0.0128

0.0064

0.0032

seconds

0.0016

0.0008
0.0004 il :
00002 e i Y S

0.0001
5e-05

16 64 256 1024 4096 16384 65536 262144 1.05e+06
bytes

Figure 3: Littlefield Bucket Brigade, Method 1, under SUNMOS, OSF (T11), and Delta NX.
The even numbered nodes first call csend(), and then call crecv(). The odd numbered
nodes first call crecv() and then csend().

2: Just csends (log-log scale)

0.2
0.1

0.0512 o
OSF (T11 with -plk -mbf 3500000) — /
0.0256 Delta—==+= i

SUNMOS (without coprocessor) -

0.0128

0.0064

0.0032

seconds

0.0016

0.0008

0.0004

0.0002

0.0001
5e-05

16 64 256 1024 4096 16384 65536 262144 1.05e+06
bytes

Figure 4: Littlefield Bucket Brigade, Method 2, under SUNMOS, OSF (T11), and Delta NX.

Each node first calls csend (), and then crecv().



O—-0—0—

~—(O+——0O+—=0

Figure 5: Ring path for messages in Littlefield ring test.

Conclusions

From these tests, we can conclude that the Intel Paragon hardware is capable of very high
bandwidth communications between nodes. It is also apparent that the second processor can
be exploited to give considerably lower latency figures. Both operating systems (NX/OSF
and SUNMOS) will continue to evolve and improve, but the assumptions made in a single
tasking operating system such as SUNMOS make it easier to achieve high performance.

References

[1] Richard J. Littlefield, Characterizing and Tuning Communications Performance on the
Touchstone DELTA and iPSC/860 (extended abstract). Proceedings of the 1992 Intel

Supercomputer Users’ Group Conference.

[2] Paragon OSF/1 User’s Guide.



